“而我们这架飞机采用了仿生学的螺旋桨设计,再结合一些其他的控制手段,能够把噪音峰值降低2-3个分贝,并且重点降低中低频,至于效果么,我想琼吉特先生您已经体验到了。”
“生物什么?”
仿生学这样一个词对于只是被临时拉过来的泰语翻译而言实在是过于离谱了,不得已只好翻译成英语,而瑞吉特显然对于这样一个非常用名词并不熟悉,只是听懂了最前面的bio-词根。
“哦,就是在螺旋桨靠外侧的前缘设计了一层和猫头鹰羽毛类似的梳齿结构,可以明显削弱2khz以下的风扇的宽频噪声,您如果感兴趣的话,等会下了飞机可以仔细看一看我们的螺旋桨设计。”
这种梳齿结构的设计需要非常精妙,还需要和螺旋桨以及发动机本身进行适配,并不是那么容易学走的。
而且瑞吉特不过是个航空公司的职业经理人而已。
更重要的是,这种梳齿结构前缘实际上会对螺旋桨的效率产生影响,因此并不能完全按照静音要求进行优化,如果随便抄一个差不多的上去,综合性能反而有可能适得其反。
实际上,真正让这架飞机噪音降低的,是高全刚刚语焉不详的那部分——
在常浩南开发出主动机翼颤振控制的逻辑之后,他很快开始考虑如何把相关思路扩展到其它领域。
而众所周知,振动和噪音本质上是一回事。
既然可以采集机翼颤振数据再通过主动施加不同相位的振动进行控制,那么对于更加规律的声波自然也能照章办事。
也就是主动降噪的逻辑。
实际上,606所在过去就研究过类似的技术,他们曾经在运7上尝试使用基于扬声器阵列的主动噪声控制,也就是后世很多豪华车里面的那套,效果出类拔萃,可以把噪音降低惊人的13-22个分贝。
这章没有结束,请点击下一页继续阅读!
然而这套设备成本突破天际不说,重量和耗电量也相当夸张,甚至会直接影响到飞机的基础性能,最后只好不了了之。
而常浩南却采用了另外一种思路。
虽然也是主动降噪,但他没有额外安装音响设备,而是让飞机的两个螺旋桨之间保持一定的相角差,相互降低另一侧螺旋桨的噪音。
实际上,在最初完成的相角控制算法中,甚至加入了根据飞机不同的飞行高度和速度自动计算最优相角差的功能,可以在几乎所有飞行工况下实现噪声的最优化控制。
但是pw127j这个发动机实在拖了后腿。
它在底子上还是机械液压控制的那套逻辑,控制精度甚至还不如歼10上的al31fn。
好在606所的研究人员后来把电子控制器玩出了不少新花样,尽管只能采用固定的同步相角差,但相比于这个年代的其它竞品来说,这点优势已经足够了。
瑞吉特刚刚的表现,就是最好的证明。
……
为了展示飞机的航程,这次飞行体验持续了将近四个小时才结束。